It is becoming increasingly common for intelligent systems, such as recommender systems, to provide explanations for their generated recommendations to the users. However, we still do not have a good understanding of what types of explanations work and what factors affect the effectiveness of different types of explanations. Our work focuses on explanations for movie recommender systems. This paper presents a mixed study where we hypothesize that the type of explanation, as well as user motivation for watching movies, will affect how users respond to recommendation system explanations. Our study compares three types of explanations: i) neighbor-ratings, ii) profile-based, and iii) event-based, as well as three types of user movie-watching motivations: i) hedonic (fun and relaxation), ii) eudaimonic (inspiration and meaningfulness), and iii) educational (learning new content). We discuss the implications of the study results for the design of explanations for movie recommender systems, and future novel research directions that the study results uncover.