During the driving process of the in-wheel drive electric vehicle, the air gap eccentricity of the motor caused by external disturbance cannot be avoided, resulting in a negative effect on vehicle dynamics. In this paper, the negative effect of vehicle lateral dynamics caused by motor-inclined eccentricity and the corresponding control method are studied. According to the Maxwell stress tensor and the air gap permeance correction coefficient, the unbalanced radial force under the inclined eccentricity of the in-wheel motor is characterized, and the corresponding vehicle dynamics model is established. Based on the vehicle dynamics model, different steering conditions are set to explore the influence of inclined eccentricity on the negative effect of vehicle lateral dynamics. It is found that the inclined eccentricity affects the handling stability of the vehicle under normal conditions and affects the rollover stability under extreme conditions. In order to solve these problems, the integrated control strategy is formulated by using the steering and driving system of an electric vehicle, and the particle swarm optimization algorithm is introduced to optimize it. The simulation results show that the proposed integrated optimal control of active rear-wheel steering and direct yaw control can effectively alleviate the negative effect of vehicle lateral dynamics caused by the inclined eccentricity of the in-wheel motor under different working conditions.
Read full abstract