The high-speed coolant pump facilitates thermal regulation in electric vehicle components, including batteries and motors, by circulating an ethylene glycol solution. This commonly used circulating fluid exhibits a notable negative correlation with temperature in terms of viscosity. Numerical simulations investigate the transient dynamics of a high-speed coolant pump operating at 6000 rpm, driving coolant flow at various temperatures. A high-speed coolant pump test rig is established, and the performance is evaluated under different temperature conditions. The numerical simulations at different temperatures align well with the experimental outcomes. Decreasing temperatures, from 100 to −20 °C, lead to reduced pump head and efficiency due to increased viscosity. Specifically, at a flow rate of 30 L/min, head decreases by 40.03% and efficiency by 44.19%. With escalating viscosity, the best efficiency point shifts toward lower flow rates. Notable impacts on both disk efficiency and hydraulic efficiency are observed due to viscosity fluctuations. It exerts minimal influence on volumetric efficiency at elevated flow rates but has a substantial impact on volumetric efficiency at lower flow rates. Increased fluid viscosity causes uneven pressure distribution within the pump, altering velocity profiles within the impeller. High-viscosity fluids tend to form large-scale vortex structures around the blades, reducing the thrust exerted by the blades on the fluid. Higher viscosity results in larger vortex structures around the blades, reducing thrust and increasing fluid frictional resistance. The study findings provide valuable insights for the advancement of high-efficiency, energy-saving, high-speed coolant pumps tailored for electric vehicles.