Sulforaphane (SFN) is a naturally occurring chemopreventive agent, which effectively inhibits proliferation of HepG2 human hepatocellular carcinoma cells via mitochondria‑mediated apoptosis. Endoplasmic reticulum stress is considered the most important cause of cell apoptosis; therefore, the present study aimed to determine whether the endoplasmic reticulum pathway was involved in SFN-induced apoptosis of HepG2 cells. An MTT assay was used to detect the inhibitory effects of SFN on HepG2 cells. Fluorescence microscopy was used to observe the morphological changes in apoptotic cells, and western blot analysis was conducted to detect the expression of binding immunoglobulin protein (Bip)/glucose-regulated protein78 (GRP78), X‑box binding protein‑1 (XBP‑1) and BH3 interacting domain death agonist (Bid). Furthermore, flow cytometry was used to determine the apoptotic rate of HepG2 cells, and the protein expression of C/EBP homologous protein (CHOP)/growth arrest‑ and DNA damage‑inducible gene153 (GADD153) and caspase-12 in HepG2 cells. The results indicated that SFN significantly inhibited the proliferation of HepG2 cells; the half maximal inhibitory concentration values were 32.03±0.96, 20.90±1.96 and 13.87±0.44µmol/l, following treatment with SFN for 24, 48and72h, respectively. Following 48h of SFN treatment (10, 20and40µmol/l), the apoptotic rates of HepG2 cells were 31.8, 61.3and77.1%, respectively. Furthermore, after 48h of exposure to SFN, the cells presented typical morphological alterations of apoptosis, as detected under fluorescence microscopy. Treatment with SFN for 48h also significantly upregulated the protein expression levels of Bip/GRP78, XBP‑1, caspase‑12, CHOP/GADD153 and Bid in HepG2 cells. In conclusion, endoplasmic reticulum stress may be considered the most important mechanism underlying SFN-induced apoptosis in HepG2 cells.
Read full abstract