Abstract

BackgroundThe objective of this study was to evaluate the efficacy of Nimesulide, a selective cyclooxygenase-2 (COX-2) inhibitor, on the growth of hypopharyngeal carcinoma cells (FaDu) in vitro, and investigate its potential mechanism.MethodsAfter FaDu cells were treated with graded concentrations of Nimesulide for divergent time, sensitivity of cells to drug treatment was analyzed by MTT assay. Morphological changes of FaDu cells in the presence of Nimesulide were observed by acridine orange cytochemistry staining. Proliferating cells were detected using the 5-Bromo-2'-deoxy-uridine (BrdU) incorporation assay. Following cells were subjected to Nimesulide (500 μmol/l) for 6 h, 12 h and 24 h, the percentage of apoptosis was examined by flow cytometry. We detected COX-2 and Survivin expression change by RT-PCR and Western blot, and analyzed the correlation of them with the growth of FaDu cells. Additionally, we also analyzed Caspase-3, Bcl-2 and Bax expressions as markers to investigate the related pathway of Nimesulide-indued apoptosis.ResultsCompared with the control group, the viabilities rates were decreased by Nimesulide in time- and dose-dependent manners, typical morphological changes of apoptotic cells were observed in the Nimesulide-treatment groups, Nimesulide could suppress the proliferation of FaDu cells significantly. The percentage of apoptosis in FaDu cells were markedly increased after Nimesulide-treatment for 6 h, 12 h and 24 h. Nimesulide down-regulated the Survivin and COX-2 expressions at mRNA and protein levels in FaDu cells. Additional analyses indicated that Bcl-2 expression was significantly decreased and the expressions of Caspase-3 as well as Bax were increased at both mRNA and protein levels.ConclusionsBased on the induction of apoptosis and suppression of proliferation, Nimesulide could inhibit the growth of FaDu cells. Furthermore, the suppression of Survivin expression may play an important role in Nimesulide-induced growth inhibition. Nimesulide could act as an effective therapeutic agent for hypopharyngeal carcinoma therapy.

Highlights

  • The objective of this study was to evaluate the efficacy of Nimesulide, a selective cyclooxygenase-2 (COX-2) inhibitor, on the growth of hypopharyngeal carcinoma cells (FaDu) in vitro, and investigate its potential mechanism

  • Nimesulide were added to the medium, and according to the result of our pre-experiment, the effect of necrosis is higher than apoptosis, so FaDu cells were harvested after 6 h, 12 h of incubation, only the cells in flow cytometry were incubated for 24 h

  • As the main morphological characteristic of apoptosis, were detected obviously in cells treated with Nimesulide

Read more

Summary

Introduction

The objective of this study was to evaluate the efficacy of Nimesulide, a selective cyclooxygenase-2 (COX-2) inhibitor, on the growth of hypopharyngeal carcinoma cells (FaDu) in vitro, and investigate its potential mechanism. Previous studies have suggested that the inhibition of COX-2 has anticancer effects in many kinds of cancers. Suppressing COX-2 expression has effects on inhibition of carcinogenesis, and further may suppress the invasion of advanced cancer [4,5]. Many studies have demonstrated that the selective COX-2 inhibitors were useful agents on the cancer therapy, the exact mechanisms by which the COX-2 played anti-cancer effect remain unclear. The administration of selective COX-2 inhibitors has come into research focus in the development of new anti-cancer agents

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.