Moringa leaves (Moringa oleifera) are useful for skin health as an additional ingredient for cosmetics, such as facial mask. This study aims to determine the optimum formula of Moringa leaves extract in powder mask, evaluate its activity as an antioxidant and antibacterial, while also ascertaining its characteristics, based on the quality requirements of SNI 16-6070-1999 and SNI 16-4399-1996 for cosmetics and skin moisturizers, respectively. Facial mask formula was made through various concentrations of Moringa leaves methanol extract 12.5%, 17.5%, 25%, and 35%, with its optimum formulation determined by panelists’ preference level, based on organoleptic test results. Furthermore, the antioxidant activity was carried out, using the 1,1-diphenyl-2-picrylhydrazil (DPPH) method, while that of the antibacterial towards Staphylococcus aureus bacteria was performed, through the use of the diffusion technique, with the active compound also being analyzed, using GC-MS (Gas Chromatography-Mass Spectrophotometry). The results however, showed that the antioxidant and antibacterial activities in the facial mask formula were lower than when in their extract form. The facial mask formula with the addition of 35% Moringa leaves extract (F4), had the highest inhibitory value of 66,04%, while the antibacterial activity against S. aureus occured at concentrations ≥ 0.125 g/mL. Also, the result of GC-MS analysis of Moringa leaves extract, showed quinic (peak 7, Rt = 21,165 minutes) and linoleic acid as the highest peak (peak 12, Rt = 29,439 minutes). Based on panelists' preference level, the result of Anova and Duncan Test analysis showed that the most optimum facial mask product was with 17.5% Moringa leaves extract (F2), with a score of 3.29. Therefore, all characterization of mask formula with 12.5%, 17.5%, 25%, and 35% additional amount of Moringa leaves extract, have met up with the requirements for SNI 16-6070-1999 and SNI 16-4380-1996 criterias, together with the pH value of 5.45 - 6.02, specific gravity 1 g/mL, emulsion stability 96.57 - 97.05%, and negative microbial contamination.
Read full abstract