Isotope composition and moisture sources of precipitation are important for understanding water cycles and reconstructing paleoclimate. Based on 15-years' precipitation stable Isotope composition (δ18O and δ2H) from four stations of the Qilian Mountains, we found unique δ18O and δ2H features associated with the incursion of the summer monsoon over the Qilian Mountains, northwestern China. In 12 of the 15 years, similar seasonal variations of δ18O and δ2H confirmed a dominant source of moisture from Westerly circulation, and higher intercepts of the local meteoric water line (LMWL) indicated strong recycling of continental moisture. However, in August 2016 and 2018, extremely low slopes and intercepts of the LMWL, and more negative δ18O and δ2H revealed substantial contributions of the Asian summer monsoon to precipitation of the Qilian Mountains, with extremely heavy precipitation in August 2016. The column moisture flux, land-sea thermal contrast, correlations of precipitation δ18O with East Asian Summer Monsoon Index and Westerlies Index, HYSPLIT modeling results and precipitation δ18O along backward trajectories confirmed incursions of the summer monsoon in August 2016 and 2018. Our redefining of the boundary of the summer monsoon region confirmed the summer monsoon incursion zone can extend to the west of longitude 96°E and north of latitude 40°N in strong monsoon years, corresponding to boundaries of monsoon incursions in the mid-Holocene. Temperature correlated with precipitation δ18O at monthly and shorter time scales, but not for whole seasons or at yearly scale, revealing that summer monsoon incursions are therefore more likely than changing temperature to explain the multi-year cycles in the Qilian Mountains ice archives. Continent-scale shifts in atmospheric circulation strongly influence water resources in the Qilian mountains, and may change in frequency as climate warms. This study therefore has important implications for understanding water resources in the Qilian mountains in the past and into the future.