In the northern hemisphere, there are six permanent or semi-permanent atmospheric activity centers, namely the Icelandic Low, Aleutian Low, India Low, Mongolia High, North Pacific High, and North Atlantic High. The first four are semi-permanent action centers and the last two are permanent circulation systems. The India Low exists only during the summer. By using 160 years (1850–2009) of monthly mean sea level pressure data from the Hadley Centre in the UK, we conduct a comprehensive study of the five boreal winter atmospheric centers of action (ACAs). Based on a unified definition and a method determined in previous studies, we calculate the indices of areal coverage (S), intensity (P), and position of action center (λ c, φ c) for each of these five ACAs. Through an in-depth analysis of these indices and their relationships with climate variables, we evaluate the indices by describing and explaining areal climate anomalies, particularly precipitation and temperature anomalies in China. We show that (1) ACAs significantly influence the climate anomalies of surrounding areas (2) the influences of oceanic ACAs are larger and the intensity anomalies of ACAs have a greater impact than their location displacement, and (3) ACAs exert more control on temperature than they do on precipitation. For the two ACAs over the north Atlantic, the impacts of their intensities on the anomalies of temperature and precipitation are similar. For the two ACAs over the north Pacific, their influences are almost the opposite. The most influential ACA for climate anomalies in China during the boreal winter is HMO. When HMO is stronger, China has a colder winter and it is wetter in the north. With stronger ACAs in the upstream, i.e., the Icelandic Low and North Atlantic High, northern China has a warmer winter. The ACAs over the north Pacific exert little influence on climate anomalies in China during winter. The analyses presented in this paper provide a set of useful indices for defining and describing ACAs, and they suggest insightful applications for these indices.