Rainfall forecasting is the most critical and challenging task because of its dependence on different climatic and weather parameters. Hence, robust and accurate rainfall forecasting models need to be created by applying various machine learning and deep learning approaches. Several automatic systems were created to predict the weather, but it depends on the type of weather pattern, season and location, which leads in maximizing the processing time. Therefore, in this work, significant artificial algae long short-term memory (LSTM) deep learning network is introduced to forecast the monthly rainfall. During this process, Homogeneous Indian Monthly Rainfall Data Set (1871–2016) is utilized to collect the rainfall information. The gathered information is computed with the help of an LSTM approach, which is able to process the time series data and predict the dependency between the data effectively. The most challenging phase of LSTM training process is finding optimal network parameters such as weight and bias. For obtaining the optimal parameters, one of the Meta heuristic bio-inspired algorithms called Artificial Algae Algorithm (AAA) is used. The forecasted rainfall for the testing dataset is compared with the existing models. The forecasted results exhibit superiority of our model over the state-of-the-art models for forecasting Indian Monsoon rainfall. The LSTM model combined with AAA predicts the monsoon from June–September accurately.
Read full abstract