Abstract

AbstractThe Atlantic multidecadal variability (AMV) modulates various climate features worldwide with enormous societal and economic implications, including variations in hurricane activity in the Atlantic, sea level, West African and Indian monsoon rainfall, European climate, and hemispheric-scale surface temperature. Leading hypotheses regarding the nature and origin of AMV focus primarily on its links with oceanic and coupled ocean–atmosphere internal variability, and on its response to external forcing. The role of another possible process, that of atmospheric noise forcing of the ocean, has received less attention. This is addressed here by means of historical coupled simulations and diagnostic experiments, which isolate the influences of external and atmospheric noise forcings. Our findings show that external forcing is an important driver of the simulated AMV. They also demonstrate that weather noise is key in driving the simulated internal AMV in the southern part (0°–60°N) of the AMV region, and that weather noise forcing is responsible for up to 10%–20% of the multidecadal internal SST variability in some isolated areas of the subpolar gyre region. Ocean dynamics independent from the weather noise forcing is found to be the dominant cause of multidecadal SST in the northern part of the AMV region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.