The main aim of this work is to provide a method to retrieve the intrinsic spatial resolution of a gamma-ray detector block based on monolithic crystals within an assembled scanner. This method consists on a discrimination of the data using a software collimation process. The results are compared with an alternative method of separating two detector blocks far enough to produce a “virtual” source collimation due to the geometric constraints on the allowed coincidence event angles.A theoretical model has been deduced to fit the measured light distribution profiles, allowing estimating the detector intrinsic spatial resolution. The detector intrinsic spatial resolution is expected to follow a Gaussian distribution and the positron-emitter source shape, given the small size of a 22Na source with 0.25 mm in diameter, can be assumed to follow a Lorentzian profile. However, the collimation of the data modifies the source shape that is no longer a pure Lorentzian distribution. Therefore, the model is based on the convolution of a Gaussian shaped distribution (contribution of the detector) and a modified Lorentzian distribution (contribution of the collimated source profile) that takes into account the collimation effect.Three LYSO crystals geometries have been studied in the present work, namely a 10 mm thick trapezoidal monolithic block, and two rectangular monolithic blocks with thicknesses of 15 mm and 20 mm, respectively. All the blocks have size dimensions of 50 mm × 50 mm. The experimental results yielded an intrinsic detector spatial resolution of 0.64 ± 0.02 mm, 0.82 ± 0.02 and 1.07 ± 0.03 mm, for the 10 mm, 15 mm and 20 mm thick blocks, respectively, when the source was placed at the center of the detector. The detector intrinsic spatial resolution was moreover evaluated across one of the axis of each crystal. These values worsen to an average value of 0.68 ± 0.04 mm, 0.90 ± 0.14 and 1.29 ± 0.19 mm, respectively, when the whole crystal size is considered, as expected. These tests show an accurate method to determine the intrinsic spatial resolution of monolithic-based detector blocks, once assembled in the PET system.
Read full abstract