Recent studies suggest that the many-body perturbation theory in the partially self-consistent GW (GW0) approximation significantly improves the prediction of band gaps in various semiconductors. In this work, we employed GW formalism to study the electronic structure of type-II InAs/GaSb strained-layer superlattices (T2SLs). T2SLs considered in this study, denoted by (monolayers of InAs, monolayers of GaSb) are (), (), (), (), and (). The InSb-type interfacial layer was introduced in the structures to resemble the actual growth condition in our laboratories. The electronic band gaps are indirect in all the structures. The band gaps at the center of the Brillouin zone show good agreement with experimental data. This study is the first step to investigate the electronic, optical, and defect characteristics of T2SLs within a parameter-free ab initio method.
Read full abstract