A series of 2-azolylmethylene-3-(2H)-benzofuranone derivatives, 2-indolylmethylene-3-(2H)-benzofuranone and 2-pyrrolylmethylene-3-(2H)-benzofuranone derivatives, were synthesized, and their monoamine oxidase (MAO) A and B inhibitory activities were evaluated. Compounds 1b, 3b, 6b, 7b, and 10b showed strong inhibitory activity against MAO-A, and compound 3b showed the highest potency and selectivity, with an IC50 value of 21 nM and a MAO-A selectivity index of 48. Compounds 3c, 4c, 9a, 9c, 10c, 11a, and 11c showed strong inhibitory activity against MAO-B, and compound 4c showed the highest potency and selectivity, with an IC50 value of 16 nM and a MAO-B selectivity index of >1100. Further analysis of these compounds indicated that compound 3b for MAO-A and compound 4c for MAO-B were competitive inhibitors, with Ki values of 10 and 6.1 nM, respectively. Furthermore, computational analyses, such as quantitative structure-activity relationship (QSAR) analysis of the 2-azolylmethylene-3-(2H)-benzofuranone derivatives conducting their pIC50 values with the Molecular Operating Environment (MOE) and Mordred, and molecular docking analysis using MOE-Dock supported that the 2-azolylmethylene-3-(2H)-benzofuranone derivatives are a privileged scaffold for the design and development of novel MAO inhibitors.