AbstractEstimates of turbulence kinetic energy (TKE) dissipation rate (ε) are key in understanding how heat, gas, and other climate‐relevant properties are transferred across the air‐sea interface and mixed within the ocean. A relatively new method involving moored pulse‐coherent acoustic Doppler current profilers (ADCPs) allows for estimates of ε with concurrent surface flux and wave measurements across an extensive length of time and range of conditions. Here, we present 9 months of moored estimates of ε at a fixed depth of 8.4 m at the Stratus mooring site (20°S, 85°W). We find that turbulence regimes are quantified similarly using the Obukhov length scale and the newer Langmuir stability length scale , suggesting that ocean‐side friction velocity implicitly captures the influence of Langmuir turbulence at this site. This is illustrated by a strong correlation between surface Stokes drift and that is likely facilitated by the steady Southeast trade winds regime. In certain regimes, , where is the von Kármán constant and is instrument depth, and surface buoyancy flux capture our estimates of well, collapsing data points near unity. We find that a newer Langmuir turbulence scaling, based on and , scales ε well at times but is overall less consistent than . Monin‐Obukhov similarity theory (MOST) relationships from prior studies in a variety of aquatic and atmospheric settings largely agree with our data in conditions where convection and wind‐driven current shear are both significant sources of TKE, but diverge in other regimes.
Read full abstract