Breaking waves aerate seawater surfaces and form whitecaps in the open ocean. The aerated surface area, or whitecap coverage, has been used to macroscopically parametrize air–sea momentum and gas exchange. However, the microscopic mechanisms of the generation, evolution and attenuation of surface bubbles in whitecaps remain poorly understood. In this study, we examined the size distributions and size-dependent lifetimes of surface bubbles generated by water sheet entry and air injection on a porous plate during the clustering, coalescing and bursting processes, depending on surfactant concentrations and bubble mobility. Mechanisms of coalescence through film thinning of adjacent bubble walls owing to the inter-bubble attraction and Marangoni forces experimentally described the surfactant-dependent bubble growth, finally achieving bubble bursting, which were statistically characterized in a population balance analysis. Lagrangian bubble lifetimes were described by the Weibull distribution, providing that surfactant in seawater extended the probabilistic survival periods of surface bubbles two times longer than those of clean bubbles.