Abstract

Micro-riblet is an efficient passive method for controlling turbulent boundary layers, with the potential to reduce frictional drag. In various applications within the transportation industry, flow separation is a prevalent flow phenomenon. However, the precise drag reduction performance of riblets in the presence of flow separation remains unclear. To address this, an inclined forward step model is proposed to investigate the interaction between riblet and upstream flow separation. The large eddy simulation (LES) method is applied to simulate the flow over geometries with different step angles and riblet positions. The results show riblets still reduce wall frictional resistance when subjected to the upstream flow separation. Remarkably, as the angle of the step increases from 0° to 30°, the drag reduction experiences an increment from 9.5% to 12.6%. From a turbulence statistics standpoint, riblets act to suppress the Reynold stress in the near-wall region and dampen ejection motions, thus weakening momentum exchange. Quadrant analysis reveals that with the augmentation of flow separation, the Q2 motion within the flow field intensifies, subsequently enhancing the riblet-induced drag reduction. Moreover, the position of the riblets has a significant impact on the pressure drag. Riblets close to the point of separation enhance flow separation, altering the surface pressure distribution and thus increasing the resistance. The results reveal that when the riblets are positioned approximately 160 riblet heights away from the step, their effect on the upstream flow separation becomes negligible. The precise performance of riblets under complex flow conditions is important for their practical engineering application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call