Molecular dynamics (MD) is an indispensable atomistic-scale computational tool widely-used in various disciplines. In the past decades, nearly all ab initio MD and machine-learning MD have been based on the general-purpose central/graphics processing units (CPU/GPU), which are well-known to suffer from their intrinsic “memory wall” and “power wall” bottlenecks. Consequently, nowadays MD calculations with ab initio accuracy are extremely time-consuming and power-consuming, imposing serious restrictions on the MD simulation size and duration. To solve this problem, here we propose a special-purpose MD processing unit (MDPU), which could reduce MD time and power consumption by about 103 times (109 times) compared to state-of-the-art machine-learning MD (ab initio MD) based on CPU/GPU, while keeping ab initio accuracy. With significantly-enhanced performance, the proposed MDPU may pave a way for the accurate atomistic-scale analysis of large-size and/or long-duration problems which were impossible/impractical to compute before.
Read full abstract