Abstract
The growth conditions for InAs homoepitaxy by molecular beam epitaxy were comprehensively studied across a broad spectrum of substrate temperatures, As2/In flux ratios, and growth rates. It was found that the surface morphology and overall quality of the InAs layers were significantly influenced by these parameters. Optimal conditions, including a lower growth temperature, reduced As2 flux, and slower growth rate, were pivotal in achieving high-quality InAs layers. Two primary characterization techniques, differential interference contrast microscopy and atomic force microscopy, were employed to evaluate the material quality. High-quality InAs homoepitaxial layers were successfully grown at a substrate temperature of 455 °C and a growth rate of 0.33 monolayers per second (ML/s). These layers exhibited a remarkably low defect density of approximately 300 defects per square centimeter, which is over an order of magnitude lower than previously reported, and a notably low root-mean-square roughness of 0.116 nm. At a growth rate of 0.33 ML/s, the growth temperature range for InAs homoepitaxial layers was found to be quite broad, whereas the As2/In flux ratio remained within a narrow range. This study underscores the critical role of precise control over growth parameters in the molecular beam epitaxy process for producing high-quality InAs homoepitaxial layers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.