The production yields of H(D) atoms in the reactions of N(2)(A (3)Sigma(u) (+)) with C(2)H(2), C(2)H(4), and their deuterated variants were determined. N(2)(A (3)Sigma(u) (+)) was produced by excitation transfer between Xe(6s[32](1)) and ground-state N(2) followed by collisional relaxation. Xe(6s[32](1)) was produced by two-photon laser excitation of Xe(6p[12](0)) followed by concomitant amplified spontaneous emission. H(D) atoms were detected by using vacuum-ultraviolet laser-induced fluorescence (LIF). The H(D)-atom yields were evaluated from the LIF intensities and the overall rate constants for the quenching, which were determined from the temporal profiles of the NO tracer emission. The absolute yields were evaluated by assuming that the yield for NH(3)(ND(3)) is 0.9. Although no HD isotope effects were observed in the overall rate constants, there were isotope effects in the H(D)-atom yields. The H-atom yields for C(2)H(2) and C(2)H(4) were 0.52 and 0.30, respectively, while the D-atom yields for C(2)D(2) and C(2)D(4) were 0.33 and 0.13, respectively. The presence of isotope effects in yields suggests that H(2)(D(2)) molecular elimination processes are competing and that molecular elimination is more dominant in deuterated species than in hydrides.
Read full abstract