The complex dielectric permittivity of L-Proline in water and ethanol solutions with molar concentrations ranging from 0.025 M to 0.15 M was measured by open-ended coaxial probe technique. The measurements were carried out across a frequency span of 0.02 < ν/GHz < 20 and temperatures varying from 298.15 K to 323.15 K. The densities (ρ) and refractive index (nD ) of the L-proline in aqueous and ethanol solutions were also determined to provide insights into the solute-solvent interactions in the system. The Havriliak-Negami equation was employed to compute the dielectric relaxation time of the mixtures. The relaxation time of L-Proline in an ethanol medium was found to be higher than that of L-Proline in an aqueous medium due to the greater degree of self-association of ethanol molecules. Additionally, the relaxation time of the mixtures lengthened with rising molar concentration, which is attributed to the presence of hydrogen bonds among L-Proline and aqueous/ethanol molecules. The strength of the hydrogen bond interaction of L-Proline in both mediums was calculated using single-point energy calculations employing IEFPCM/PCM solvation models through DFT/B3LYP and MP2 approaches with a 6-311 G ++ (d, p) basis set. The results were correlated with the hydrogen bond strength, Gibbs’ free energy of activation parameter, and dipole-dipole interactions. Communicated by Ramaswamy H. Sarma
Read full abstract