This article presents the case study of our research in the field of innovative methods of pavement subgrade quality control using the CIST (Clegg Impact Soil Tester) device. The CIST device developed by Dr Clegg from the University of Western Australia measures soil compaction indirectly using the CBR value. The value is evaluated based on the deceleration rate of a falling 4.5 kg weight moving in a vertical guide roller. In Europe, for the assessment of the mechanical efficiency (bearing capacity) of cohesive soils in the pavement subgrade, priority is given to indirect assessment methods especially using the laboratory determination of CBR (Californian Bearing Ratio) and directly through the implementation of a static plate load test (SPLT). This article reports the long-term results of our research in the field of verification and validation of an innovative CIST device, which minimizes the time, space, and economic disadvantages of SPLT. This article presents the results of determining the field of applicability of the CIST device for cohesive soils, the correlation dependencies (CD) of the CBR values determined by the CIST device, and, according to STN 72 1016, the CD of the impact dynamic deformation modulus Evd from the CIV (Clegg Impact Value). We consider the most important results of our long-term research to be a recognition of the ability of CIST to assess the quality of cohesive soils up to a compression value of 40 mm, corresponding to a CBR of 2.2% and a modulus of subgrade deformation of 20 MPa. A very strong correlation dependence of CBRClegg [%] on the moisture content of clayey soils in the interval from 5 to 19% was also observed. The presented knowledge led to the creation of relevant documents for the credible implementation of the CIST device in the system approach for assessing the quality of the pavement subgrade.