We prove that any hyper-Kähler sixfold $K$ of generalized Kummer type has a naturally associated manifold $Y_K$ of $\mathrm {K}3^{[3]}$ type. It is obtained as crepant resolution of the quotient of $K$ by a group of symplectic involutions acting trivially on its second cohomology. When $K$ is projective, the variety $Y_K$ is birational to a moduli space of stable sheaves on a uniquely determined projective $\mathrm {K}3$ surface $S_K$. As an application of this construction we show that the Kuga–Satake correspondence is algebraic for the K3 surfaces $S_K$, producing infinitely many new families of $\mathrm {K}3$ surfaces of general Picard rank $16$ satisfying the Kuga–Satake Hodge conjecture.