Abstract
We consider two K3 surfaces defined over an arbitrary field, together with a smooth proper moduli space of stable sheaves on each. When the moduli spaces have the same dimension, we prove that if the etale cohomology groups (with Ql coefficients) of the two surfaces are isomorphic as Galois representations, then the same is true of the two moduli spaces. In particular, if the field of definition is finite and the K3 surfaces have equal zeta functions, then so do the moduli spaces, even when the moduli spaces are not birational.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.