Soft robots typically involve manual assembly of core hardware components like actuators, sensors, and controllers. This increases fabrication time and reduces consistency, especially in small-scale soft robots. We present a scalable monolithic fabrication method for millimeter-scale soft-rigid hybrid robots, simplifying the integration of core hardware components. Actuation is provided by soft-foldable polytetrafluoroethylene film-based actuators powered by ionic fluid injection. The desired motion is encoded by integrating a mechanical controller, comprised of rigid-flexible materials. The robot's motion can be self-sensed using an ionic resistive sensor by detecting electrical resistance changes across its body. Our approach is demonstrated by fabricating three distinct soft-rigid hybrid robotic modules, each with unique degrees of freedom: translational, bending, and roto-translational motions. These modules connect to form a soft-rigid hybrid continuum robot with real-time shape-sensing capabilities. We showcase the robot's capabilities by performing object pick-and-place, needle steering and tissue puncturing, and optical fiber steering tasks.
Read full abstract