The gaze-following patch (GFP) is located in the posterior temporal cortex and has been described as a cortical module dedicated to processing other people's gaze-direction in a domain-specific manner. Thus, it appears to be the neural correlate of Baron-Cohen's eye direction detector (EDD) which is one of the core modules in his mindreading system-a neurocognitive model for the theory of mind concept. Inspired by Jerry Fodor's ideas on the modularity of the mind, Baron-Cohen proposed that, among other things, the individual modules are domain specific. In the case of the EDD, this means that it exclusively processes eye-like stimuli to extract gaze-direction and that other stimuli, which may carry directional information as well, are processed elsewhere. If the GFP is indeed EDD's neural correlate, it must meet this expectation. To test this, we compared the GFP's BOLD activity during gaze-direction following with the activity during arrow-direction following in the present human fMRI study. Contrary to the expectation based on the assumption of domain specificity, we did not find a differentiation between gaze- and arrow-direction following. In fact, we were not able to reproduce the GFP as presented in the previous studies. A possible explanation is that in the present study-unlike the previous work-the gaze stimuli did not contain an obvious change of direction that represented a visual motion. Hence, the critical stimulus component responsible for the identification of the GFP in the previous experiments might have been visual motion.
Read full abstract