The present study extracts starch from guinea grass seed and fiber from the starch extraction residue. The fibrous residue was chemically converted into cellulose microfiber (CMF) and used to reinforce the native, esterified and crosslinked guinea starch films. The films were developed with 5 % starch, 40 % glycerol and 0, 2.5, 5, and 10 % CMF based on the dry matter of starch. SEM images of all film samples showed good compatibility of CMF with starch molecules, and no fractures or pores were observed. Adding filler materials to modified starch films slightly increased the film thickness (0.24 to 0.30 mm) due to the high dimensions of CMF, which comprise a significant amount of the composite's volume. A synergetic effect of starch modification and CMF in films decreased the moisture content (21.98 to 9.21 %), water solubility (25.65 to 15.47 %), water vapor permeability (6.96×10−7 to 1.65×10−7g∙mm2∙day∙Pa), and elongation at the break (33.51 to 16.79 %) while increasing the tensile strength (1.84 to 3.85 MPa) and Young's modulus (5.49 to 22.93 MPa). The L* and a* values of the films decreased, and the b* and opacity values of the films increased with the addition of CMF. The XRD graph showed that all films have semicrystalline structures with peaks at 18°, 20°, and 22°, and the degree of crystallinity increases (32.3 to 55.1 %) with CMF. All film samples showed good thermal stability up to 315 °C. In conclusion, esterified starch-based films exhibited superior barrier properties and flexibility. On the contrary, cross-linked starch films demonstrated higher tensile strength and lower water solubility.
Read full abstract