Abstract

The widespread use of starch-based films is hindered by inadequate tensile strength and high water sensitivity. To address these limitations, a novel starch film with a dynamic network structure was produced via the dehydration-condensation reaction of N, N′-methylene diacrylamide (MBA) and microcrystalline cellulose (MCC). The improvement in mechanical properties was enhanced by the incorporation of MCC, which was achieved through intermolecular hydrogen bonding and chemical crosslinking. To verify the interactions among MCC, MBA, and starch, x-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD) were conducted. The results established the predicted interactions. The dynamic network structure of the film reduced the water absorption capacity (WAC) of starch and MCC hydroxyl groups, as confirmed by differential scanning calorimeter (DSC) and dynamic mechanical thermal analysis (DMTA). These analyses showed a restriction in the mobility of starch chains, resulting in a higher glass transition temperature (Tg) of 69.26 °C. The modified starch films exhibited excellent potential for packaging applications, demonstrating a higher contact angle (CA) of 89.63°, the lowest WAC of 4.73 g/g, and the lowest water vapor transmission rate (WVTR) of 13.13 g/m2/d, along with improved mechanical properties and identical light transmittance compared to pure starch films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.