Polysaccharides are used as wall materials to extend the shelf life of lactic acid bacteria. Ice crystal formation during freezing leads to probiotic death. We prepared a series of dodecenyl succinic anhydride (DDSA)-modified rice starches with varying degrees of substitution and compared their functional properties. Fourier-transform infrared spectroscopy, X-ray diffraction analysis, and nuclear magnetic resonance results confirmed successful DDSA modification and the disruption of the long-range ordering of starch molecules. The structural changes modified the physicochemical properties of starch. For example, the apparent viscosity and viscoelastic characteristics of modified rice starch increased, and its freeze-thaw stability and emulsion capacity were remarkably improved after DDSA modification. Moreover, the modified starches exhibited promising performance for microencapsulating Pediococcus acidilactici. This study describes a rice starch derivative with excellent physicochemical properties that can be used to enhance the storage stability of bioactive probiotics.
Read full abstract