We recently introduced a class of [Formula: see text] graded discrete Lax pairs and studied the associated discrete integrable systems (lattice equations). In this paper, we introduce the corresponding Yang-Baxter maps. Many well-known examples belong to this scheme for N=2, so, for N≥3, our systems may be regarded as generalizations of these. In particular, for each N we introduce a class of multi-component Yang-Baxter maps, which include HBIII (of Papageorgiou et al. 2010 SIGMA 6, 003 (9 p). (doi:10.3842/SIGMA.2010.033)), when N=2, and that associated with the discrete modified Boussinesq equation, for N=3. For N≥5 we introduce a new family of Yang-Baxter maps, which have no lower dimensional analogue. We also present new multi-component versions of the Yang-Baxter maps FIV and FV (given in the classification of Adler et al. 2004 Commun. Anal. Geom. 12, 967-1007. (doi:10.4310/CAG.2004.v12.n5.a1)).
Read full abstract