Pathogenic Yersinia have been a productive model system for studying bacterial pathogenesis. Hallmark contributions of Yersinia research to medical microbiology are legion and include: (i) the first identification of the role of plasmids in virulence, (ii) the important mechanism of iron acquisition from the host, (iii) the first identification of bacterial surface proteins required for host cell invasion, (iv) the archetypical type III secretion system, and (v) elucidation of the role of genomic reduction in the evolutionary trajectory from a fairly innocuous pathogen to a highly virulent species. The outer membrane (OM) protein Ail (attachment invasion locus) was identified over 30 years ago as an invasin-like protein. Recent work on Ail continues to provide insights into Gram-negative pathogenesis. This review is a synopsis of the role of Ail in invasion, serum resistance, OM stability, thermosensing, and vaccine development. Ail is shown to be an essential virulence factor with multiple roles in pathogenesis. The recent adaptation of Yersinia pestis to high virulence, which included genomic reduction to eliminate redundant protein functions, is a model to understand the emergence of new bacterial pathogens.