This paper proposes a neural network-based model predictive control (MPC) method for robotic manipulators with model uncertainty and input constraints. In the presented NN-based MPC structure, two groups of radial basis function neural networks (RBFNNs) are considered for online model estimation and effective optimization. The first group of RBFNNs is introduced as a predictive model for the robotic system with online learning strategies for handling the system uncertainty and improving the model estimation accuracy. The second one is developed for solving the optimization problem. By taking into account an actor–critic scheme with different weights and the same activation function, adaptive learning strategies are established for balancing between optimal tracking performance and predictive system stability. In addition, aiming at guaranteeing the input constraints, a nonquadratic cost function is adopted for the NN-based MPC. The ultimately uniformly boundedness (UUB) of all variables is verified through the Lyapunov approach. Simulation studies are conducted to explain the effectiveness of the proposed method.
Read full abstract