Abstract

This paper presents a dynamical recurrent neural network- (RNN-) based model predictive control (MPC) structure for the formation flight of multiple unmanned quadrotors. A distributed hierarchical control system with the translation subsystem and rotational subsystem is proposed to handle the formation-tracking problem for each quadrotor. The RNN-based MPC is proposed for each subsystem, where the RNN is introduced as the predictive model in MPC. And to improve the modeling accuracy, an adaptive updating law is developed to tune weights online for the RNN. Besides, the adaptive differential evolution (DE) algorithm is utilized to solve the optimization problem for MPC. Furthermore, the closed-loop stability is analyzed; meanwhile, the convergence of the DE algorithm is discussed as well. Finally, some simulation examples are provided to illustrate the validity of the proposed control structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.