The protection of Biometric systems against attacks is crucial as biometric devices proliferate in the field of personal authentication. The presentation assault is the most prevalent type of attack on biometric systems; it entails presenting a fake copy (artefact) of the true biometric to the sensor in order to gain unauthorised access. The vulnerability in palmprint-based biometric systems has not received much attention despite the substantial threat posed by these assaults. In this research, we show how to detect a spoof palmprint image. Spoofing attacks involving faked images pose a significant threat to biometric systems. For the suggested method, we use the CASIA palmprint database, from which we constructed our own spoof database using printed photos. After that, we did some pre-processing to obtain the ROI image and a noise-free image for feature extraction using the SIFT approach. We use the convolution neural network for classification and the SVM for comparison. We obtained a result of 96.2% for our proposed palmprint system identification and 89% for SVM. But our main goal is to train the model for spoof detection, so we take some normal images and some spoof images for our train model and use the confusion matrix to calculate the accuracy of our model. We obtain an overall accuracy of 86% for our spoof detection by computing the confusion matrix.