Abstract
This article presents a model-based approach to assess the battery performance of a two-wheeler EV drive train system for various user driving patterns using the selected urban drive cycles. The battery pack is one of the most expensive parts of an EV, and its life is heavily dependent on its usage pattern. The impact of the user’s driving behaviour on the performance parameters of the EV battery pack needs to be investigated. Thus, a two-wheeler EV drive train model was developed in MATLAB with a 5 kW motor, a 4.32 kWh battery, vehicle dynamics, and the power train control algorithms for in-depth analysis of battery performance. The validity of the developed model was tested against various state-of-the-art drive cycles for a duration of 3600 s. Numerous user driving behaviours, such as aggressive, moderate, and slow driving behaviours, were modelled with modified drive cycles, which were used to assess the two-wheeler battery pack performance. An optimum speed range, which ranges from 21 km/h to 34 km/h for different drive cycles, was identified, and these speed ranges minimised the battery energy consumption for the selected drive cycles with the modified drive cycle models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.