Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted. Some critical microstructures such as volume percentage and size of nanoparticles, and interphase characteristics surrounding the CB are micromechanically captured. Next, the electrical conductivity of randomly oriented SiC-containing composites in which the nanocomposite and whisker are considered as the matrix and reinforcement phases, respectively, is estimated. Influences of whisker aspect ratio and volume fraction on the effective electrical conductivity of the SiC/CB-containing polymer composites are explored. Some comparison studies are performed to validate the accuracy of the model. It is observed before the percolation threshold that the addition of nanoparticles with a uniform dispersion can improve the electrical conductivity of the polymer composites containing SiC/CB hybrids. Moreover, the results show that the electrical conductivity is more enhanced by the decrease in nanoparticle size. Interestingly, the composite percolation threshold is significantly reduced when SiC whiskers with a higher aspect ratio are added. This work will be favorable for the design of electro-conductive polymer composites with high performances.
Read full abstract