The thickness of the coating on the surface of a workpiece is an important factor in determining the quality of spraying. However, it is challenging to estimate the distribution of film thickness accurately before the actual spraying process. This lack of estimation hinders the optimization of spraying process parameters and trajectory. To overcome this, a numerical simulation of surface spray coating thickness was conducted to provide guidance for the actual coating process. The research consists of three main parts. Firstly, the spray trajectory of the spray gun is determined using the proposed Stereo Lithography (STL) model slicing algorithm. Secondly, a two-phase flow spray model and collision adhesion model are established to construct the spray film model. The surface mesh is determined, and the spraying process parameters are set. Finally, numerical simulation is conducted to analyze the dynamic spraying trajectory and the distribution of coating thickness. The results show that the coating thickness distribution on an arc surface is thicker in the middle and thinner on the edges. The distribution is symmetric with respect to both the transverse and longitudinal directions of the arc surface. The coating thickness distribution at both ends is not as uniform as in the middle section. The concave part of the free surface has the largest coating thickness, while the coating thickness distribution on the convex part is not as uniform as on the relatively flat part. This method of simulating the coating thickness distribution on complex surfaces provides a solid foundation for further optimization of spraying process parameters and trajectory, ultimately improving the qualification rate of workpiece spraying processing.