Damage detection and structural health monitoring have always been of great importance to civil engineers and researchers. Vibration-based damage detection has several advantages compared to traditional methods of non-destructive evaluation, such as ground penetrating radar (GPR) or ultrasonic testing, since they give a global response and are feasible for large structures. Damage detection requires a comparison between two systems states, the baseline or “healthy state”, i.e., the initial modal parameters, and the damaged state. In this study, system identification (SI) was carried out on a pedestrian bridge by measuring the dynamic response using six low-cost triaxial accelerometers. These low-cost accelerometers use a micro-electro-mechanical system (MEMS), which is cheaper compared to a piezoelectric sensor. The frequency domain decomposition algorithm, which is an output-only method of modal analysis, was used to obtain the modal properties, i.e., natural frequencies and mode shapes. Three mode shapes and frequencies were found out using system identification and were compared with the finite element model (FEM) of the bridge, developed using the commercial finite element software, Abaqus. A good comparison was found between the FEM and SI results. The frequency difference was nearly 10%, and the modal assurance criterion (MAC) of experimental and analytical mode shapes was greater than 0.80, which proved to be a good comparison despite the small number of accelerometers available and the simplifications and idealizations in FEM.
Read full abstract