Policosanol is a mixture of long-chain aliphatic alcohols (LCAAs) derived from various plant and insect origins that are marketed by various companies with distinct formulations and brand names. Policosanols offer several beneficial effects to treat dyslipidemia and hypertension; however, a comprehensive functionality comparison of various policosanol brands has yet to be thoroughly explored. In the present study five distinct policosanol brands from different origins and countries, Raydel-policosanol, Australia (PCO1), Solgar-policosanol, USA (PCO2), NutrioneLife-monacosanol, South Korea (PCO3), Mothernest-policosanol, Australia (PCO4), and Peter & John-policosanol, New Zealand (PCO5) were compared via dietary supplementation (1% in diet, final wt/wt) to zebrafish for six weeks to investigate their impact on survivability, blood lipid profile, and functionality of vital organs under the influence of a high-cholesterol diet (HCD, final 4%, wt/wt). The results revealed that policosanol brands (PCO1-PCO5) had a substantial preventive effect against HCD-induced zebrafish body weight elevation and hyperlipidemia by alleviating total cholesterol (TC) and triglycerides (TG) in blood. Other than PCO3, all the brands significantly reduced the HCD's elevated low-density lipoprotein cholesterol (LDL-C). On the contrary, only PCO1 displayed a significant elevation in high-density lipoprotein cholesterol (HDL-C) level against the consumption of HCD. The divergent effect of PCO1-PCO5 against HCD-induced hepatic damage biomarkers, aspartate aminotransferase (AST) and alanine aminotransferase (ALT), was observed. PCO1, PCO2, and PCO4 efficiently curtailed the AST and ALT levels; however, PCO3 and PCO5 potentially aggravated the HCD's elevated plasma AST and ALT levels. Consistently, the hepatic histology outcome revealed the least effectiveness of PCO3 and PCO5 against HCD-induced liver damage. On the contrary, PCO1 exhibited a substantial hepatoprotective role by curtailing HCD-induced fatty liver changes, cellular senescent, reactive oxygen species (ROS), and interleukin-6 (IL-6) production. Likewise, the histological outcome from the kidney, testis, and ovary revealed the significant curative effect of PCO1 against the HCD-induced adverse effects. PCO2-PCO5 showed diverse and unequal results, with the least effective being PCO3, followed by PCO5 towards HCD-induced kidney, testis, and ovary damage. The multivariate interpretation based on principal component analysis (PCA) and hierarchical cluster analysis (HCA) validated the superiority of PCO1 over other policosanol brands against the clinical manifestation associated with HCD. Conclusively, different brands displayed distinct impacts against HCD-induced adverse effects, signifying the importance of policosanol formulation and the presence of aliphatic alcohols on the functionality of policosanol products.