We develop a trust region filter strategy for simultaneous optimal design of heat exchanger networks that includes detailed design of shell-and-tube heat exchangers. The strategy first solves a mixed-integer nonlinear programming (MINLP) formulation with shortcut models to generate candidate network topologies, which are then used in a non-isothermal mixing nonlinear programming (NLP) suboptimization with detailed optimal exchanger design models embedded using a modified trust region filter (TRF) algorithm. An integer cut based strategy is used to bound the solutions from MINLP and the NLP which aids in convergence to the solution of the overall simultaneous design problem. Under assumptions, the TRF based strategy can guarantee convergence to near optimal solutions of the overall design problem. The presented solution strategy is thus able to find optimal heat exchanger network designs based on the simultaneous optimization of the network topology and mass and energy balances, together with detailed shell-and-tube heat exchanger optimization, including the number of shell and tube passes, pressure drops, and tubes, tube lengths, etc. The proposed strategy is tested on three literature based case studies and their results are compared with previous studies to showcase its performance.