The circadian rhythm of hepatic cell proliferation in rats appears on the 20th day of life, when the hypothalamo-adrenal axis is mature enough for circadian activity to occur. From the 20th day to the 30th day of life, the mitotic rhythm is progressively induced by a reduction in nocturnal values, while diurnal rhythms remain unchanged. Mitotic peaks emerge at 10.00 hours. A labelling index wave occurs 8 hr before the corresponding mitotic wave, with a peak at 02.00 hours and a minimum in the evening, coincidental with the acrophase of plasma corticosterone level (activity phase). Labelled mitoses curves and metaphase accumulation after colchicine injection show that the duration of the S, G2 and M phases remain approximately constant and that the circadian variation is due to a variation in the rate of cells that enter these successive phases. During the synchronization period (from day 20 to 30), the growth fraction decreases progressively. Adrenalectomy at this time is followed by a higher cell proliferation and all rhythms disappear after 2 days. Corticosterone injected before the triggering of the rhythmic activity in 17-day-old rats immediately reduces the labelling index, while the mitotic index is decreased 10 hr later; this delay is equal to the S + G2 duration. The results are discussed. They favour the hypothesis that the circadian variation of corticosterone is responsible for the induction of a circadian variation in developmental cell proliferation by inhibition of the G1-S transition when it is higher in the evening.
Read full abstract