Abstract
This article describes developmental analysis of gs(1)N26 mutation. gs(1)N26 is a temperature-sensitive maternal-effect mutation affecting the formation of the germ line (Y. Niki and M. Okada, Whlhelm Roux's Arch. Dev. Biol. 190, 1–10, 1981). At 25°C, the cleavage nuclei do not divide synchronously and show various degrees of retarded migration to the posterior region. Blastoderm nuclei show antero-posterior mitotic waves; posterior yolk nuclei also are reduced in number at this stage. Pole cells from only when the cleavage nuclei migrate directly to the posterior pole. In fact, the posterior region of young eggs presents the usual ultrastructural features, and it is also able to participate in the formation of pole cells, as was proven by cytoplasmic transfer experiments. Therefore the defects in blastogenesis, in particular in the formation of pole cells of gs(1)N26 embryos, appear to result from the delayed migration of cleavage nuclei to the posterior pole.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.