There is now convincing evidence for the distribution of several nerve plexuses in the outer zone of the adrenal cortex. At the ultrastructural level, the close proximity of nerve boutons to cortical cells establishes the anatomical substrate for a direct neural effect on adrenal cortical cell functions. Of those neurotransmitters and neuropeptides identified to date, catecholamine, VIP, and NPY appear to be most prevalent. Importantly, the amounts of morphologically identifiable catecholamine, VIP and NPY are differentially sensitive to alteration of several physiological conditions. Furthermore, the VIP plexus appears to be intrinsic to the adrenal while the catecholamine and NPY nerve fibers enter the adrenal along blood vessels. Together, these results suggest that these multiple nerve plexuses might exert control on several adrenocortical cellular processes in addition to the regulation of adrenal blood flow. Compensatory adrenal growth, a rapid proliferative response to unilateral adrenalectomy, was previously shown to be neurally mediated. The role of the catecholamine innervation in the mediation of this process has now been demonstrated. The elimination of the sympathetic nervous system by neonatal sympathectomy inhibited the proliferative response as measured by DNA synthesis. In vivo administration of beta-adrenergic receptor blockers did not inhibit the compensatory growth response. Furthermore, the beta-adrenergic agonist isoproterenol, inhibited the rate of DNA synthesis both in vivo and in vitro. The direct action of the beta-adrenergic agonist on the adrenocortical cell DNA synthesis rate suggests that the catecholaminergic nerves tonically inhibit cell proliferation associated with compensatory growth and that the release from the beta-adrenergic inhibition is necessary for compensatory growth. Whether inhibition of the beta-adrenergic innervation is the trigger for compensatory growth or whether it is permissive to the action of a still unidentified mitogenic substance, is not yet known. The direct role of VIP and catecholamines in the regulation of steroidogenesis has been investigated in vitro using the perifused capsule-glomerulosa preparation which is representative of a normal outer zone of the adrenal and is the site of the neural plexuses and identified receptors. Both VIP and isoproterenol stimulate steroidogenesis and specifically cause a greater increase in secretion of aldosterone than corticosterone. Although the concentrations of VIP and isoproterenol required to stimulate steroidogenesis are greater than reported circulating levels, release from resident nerves could provide high local concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)
Read full abstract