Traumatic brain injury contributes to morbidity in children and boys is disproportionately represented. Cerebral autoregulation is impaired after traumatic brain injury, contributing to poor outcome. Cerebral perfusion pressure is often normalized by the use of vasopressors to increase mean arterial pressure. In prior studies, we observed that phenylephrine prevented impairment of autoregulation in female but exacerbated in male piglets after fluid percussion injury. In contrast, dopamine prevented impairment of autoregulation in both sexes after fluid percussion injury, suggesting that pressor choice impacts outcome. The extracellular signal-regulated kinase isoform of mitogen-activated protein kinase produces hemodynamic impairment after fluid percussion injury, but the role of the cytokine interleukin-6 is unknown. We investigated whether norepinephrine sex-dependently protects autoregulation and limits histopathology after fluid percussion injury and the role of extracellular signal-regulated kinase and interleukin-6 in that outcome. Prospective, randomized animal study. University laboratory. Newborn (1-5 d old) pigs. Cerebral perfusion pressure, cerebral blood flow, and pial artery diameter were determined before and after fluid percussion injury in piglets equipped with a closed cranial window and post-treated with norepinephrine. Cerebrospinal fluid extracellular-signal-regulated kinase mitogen-activated protein kinase was determined by enzyme-linked immunosorbent assay. Norepinephrine does not protect autoregulation or prevent reduction in cerebral blood flow in male but fully protects autoregulation in female piglets after fluid percussion injury. Papaverine-induced dilation was unchanged by fluid percussion injury and norepinephrine. Norepinephrine increased extracellular signal-regulated kinase mitogen-activated protein kinase up-regulation in male but blocked such up-regulation in female piglets after fluid percussion injury. Norepinephrine aggravated interleukin-6 upregulation in males in an extracellular signal-regulated kinase mitogen-activated protein kinase-dependent mechanism but blocked interleukin-6 up-regulation in females after fluid percussion injury. Norepinephrine augments loss of neurons in CA1 and CA3 hippocampus of male piglets after fluid percussion injury in an extracellular signal-regulated kinase mitogen-activated protein kinase-dependent and interleukin-6-dependent manner but prevents loss of neurons in females after fluid percussion injury. Norepinephrine protects autoregulation and limits hippocampal neuronal cell necrosis via modulation of extracellular signal-regulated kinase mitogen-activated protein kinase and interleukin-6 after fluid percussion injury in a sex-dependent manner.