Abstract

Pharmacological induction of the fetal γ globin gene and the consequent formation of HbF (α2/γ2) in adult erythroid cells are one feasible therapeutic strategy for sickle cell disease (SCD) and severe β-thalassemias. Hydroxyurea (HU) is the current drug of choice for SCD, but serious side effects limit its clinical use. Moreover, 30 to 50% of patients are irresponsive to HU treatment. We have used high-throughput screening to identify benzo[de]benzo[4,5]imidazo[2,1-a]isoquinolin-7-one and its derivatives (compounds I to VI) as potent γ globin inducers. Of the compounds, I to V exert superior γ globin induction and have better therapeutic potential than HU, likely because of their activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway and modulation of expression levels and/or chromosome binding of γ globin gene regulators, including BCL11A, and chromatin structure over the γ globin promoter. Unlike sodium butyrate (NaB), the global levels of acetylated histones H3 and H4 are not changed by compound II treatment. Remarkably, compound II induces the γ globin gene in HU-resistant primary human adult erythroid cells, the p38 signaling pathway of which appears to be irresponsive to HU and NaB as well as compound II. This study provides a new framework for the development of new and superior compounds for treating SCD and severe β-thalassemias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.