In this study a multi-objective problem considering uncertainty and flexibility of job sequence in an automated flexible job shop (AFJS) is considered using manufacturing simulation. The AFJS production system is considered as a complex problem due to automatic elements requiring planning and optimization. Several solution approaches are proposed lately in different categories of meta-heuristics, combinatorial optimization and mathematically originated methods. This paper provides the metamodel using simulation optimization approach based on multi-objective efficiency. The proposed metamodel includes different general techniques and swarm intelligent technique to reach the optimum solution of uncertain resource assignment and job sequences in an AFJS. In order to show the efficiency and productivity of the proposed approach, various experimental scenarios are considered. Results show the optimal resources assignment and optimal job sequence which cause efficiency and productivity maximization. The makespan, number of late jobs, total flow time and total weighted flow time minimization have been resulted in an automated flexible job shop too.
Read full abstract