Nonprecious metals based electrocatalysts are highly anticipated in electrocatalytic water splitting as the increasing energy demand can be handled by large scale H2 production with minimum expenses. Herein, a facile and faster nickelo-sulfurization of DNA in ambient conditions has been developed that resulted in NiS anchored wirelike assemblies of DNA. The effect of DNA concentration on material stability and electrocatalytic activity was studied, and it was found that, with DNA to Ni2+ ratios of 0.048 and 0.072 M, the NiS anchored DNA colloidal solutions were stable. In addition, it was found that NiS(0.048) with a relatively lower DNA concentration showed better oxygen evolution reaction (OER) activity than NiS(0.072). Overpotentials of 352 and 401 mV were required by NiS(0.048) and NiS(0.072) to deliver a current density of 10 mA cm–2 even with an ultralow quantity of NiS(0.0123 mg cm–2) in both. The same trend was reflected in the Tafel slopes of NiS(0.048) and NiS(0.072) which showed 58.6 and 112.4 ...
Read full abstract