The production of high-quality castings without foundry defects at minimal production costs is a constant priority for foundries. Innovation and optimization of production processes are key to achieving this goal. Computer simulation of foundry processes offers a modern alternative to expensive and time-consuming experiments in real foundries and provides a reliable representation and analysis of casting and solidification processes. A detailed analysis of the casting and solidification simulation results allows the prediction of various risks that can cause defects in cast castings, thereby reducing their quality and, last but not least, the cost of their production. This paper deals with the analysis of a computer simulation of the casting of a brake disc in a Slovak foundry. This brake disc has had shrinkages and micro shrinkages that reduce the internal quality of the casting. These defects occurred in the ribs in the upper part of the casting under the feeders. A computer simulation of the casting and solidification of this casting was made according to the real conditions. It turned out that the designed gating system with a system of feeders was not sufficient to eliminate the emerging defects. A new layout for the feeders was proposed, which ultimately eliminated the occurrence of defects based on the results of the computer simulation. The input parameters were set to be as close as possible to the actual needs of the foundry. Moreover, 3D models of the assemblies were designed in SolidWorks Premium 2015 x64 Edition CAD software, and the filling and solidification simulations were performed using the NovaFlow & Solid CV 4.6r42 simulation program.