Abstract

In the aerospace and automotive industries aluminum sheet metal components are often produced by forming and post-machining. Due to the change in the complex stress state during manufacturing, part distortion is a major challenge. The overall objective of this work is to streamline the process chain to minimize production costs. For this, a determination of the material properties and analysis of the machining process parameters and their influence on the resulting distortion are required.First, tensile tests of the aluminum alloy EN AW-7075-T651 were performed. Subsequently, a series of machining tests were conducted to examine the effect of the machining process on the resulting part distortion. This paper presents machining-induced part distortion depending on the variation of the process parameters for down milling operations of thick aluminum plate material. It was found that the radial depth of cut and the cutting speed have a high impact on the resulting distortion, while the feed rate has a small influence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.