Purpose. To ensure the rational organization of the evacuation of people from a region affected by an emergency by developing a mathematical and algorithmic toolkit that will allow for the early distribution of transport and material resources, maximizing coverage of the affected areas while minimizing evacuation time. Methodology. System analysis of evacuation processes; mathematical modeling, the theory of continuous problems of optimal partitioning of sets, non-differentiable optimization. Findings. The object of the study is the two-stage evacuation logistic processes that occur when serving the population of areas affected by emergencies of a natural or technogenic nature. The research considers the possibility of optimally distributing human flows within the transportation system, the structural subdivisions of which are first-stage centers (first aid stations that carry out the reception of citizens from areas affected by the disaster) and second-stage centers (specialized units of the emergency aid system that provide further services to the evacuated population). The proposed mathematical model deals with the problem of optimally partitioning a continuous set with the placement of subset centers and additional connections. Methods for its solution have been described. We demonstrate the versatility of these models, as they can be used to describe logistic evacuation processes, organize assembly points, intermediate locations, evacuation reception points, and those providing primary assistance to the affected population. We calculate the appropriate number of essential products and deliver them from existing warehouses through distribution centers to the affected areas. Originality. As preventive measures to increase the level of population safety during an emergency, we consider the optimal placement of rescue facilities and the zoning of the territory to distribute evacuation traffic. We also address the problem of the optimal distribution of human flows in the transport and logistics system. Practical value. The presented models, methods, and algorithms enable the solution of many practical problems related to the development of preventive measures and the planning of rescue operations to ensure the population’s safety in case of emergencies. The theoretical results obtained are translated into specific recommendations that can be utilized when addressing logistical problems related to the organization of primary evacuation of the population from affected areas and their subsequent transportation to safer locations for further assistance.