Abstract

We present simulations of evacuation processes using a recently introduced cellular automaton model for pedestrian dynamics. This model applies a bionics approach to describe the interaction between the pedestrians using ideas from chemotaxis. Here we study a rather simple situation, namely the evacuation from a large room with one or two doors. It is shown that the variation of the model parameters allows to describe different types of behaviour, from regular to panic. We find a non-monotonic dependence of the evacuation times on the coupling constants. These times depend on the strength of the herding behaviour, with minimal evacuation times for some intermediate values of the couplings, i.e., a proper combination of herding and use of knowledge about the shortest way to the exit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call